
TextORama
by Sharon Zakhour, NeXT Developer Support Team

Valid for 3.0

Overview
This MiniExample illustrates two things:

· How to create a TextField which supports one or more of these features:
- Restricting text length (both when typing and pasting).
- Autojumping to another TextField when maximum length is reached.
- Interpreting a carriage return literally rather than as an indication to end

editing.
· How to implement emacs key binding support for the Text object.

Topics Of Interest

TurboTextField:

There are several ways available to modify the behavior for entering text. These
include:

Character filter
Text filter
Text delegate methods such as textDidGetKeys:isEmpty:

Two standard character filters are provided by NeXT -- NXFieldFilter (used primarily
by TextFields) and NXEditorFilter (used primarily for standard text editing). [See

reference information below for further information on the Text class.] There is no
default text filter. Both types of filters are implemented as function calls with a pre-
defined argument protocol. They cannot be subclassed but they can be replaced
using the setCharFilter: and setTextFilter: methods of Text.

How does a character filter differ from a text filter?
A character filter is typically appropriate for very straightforward filtering -- trapping
the character typed by the user and replacing it with another. A character filter has
no awareness of where it sits in the grand scheme of things. A text filter is slightly
more sophisticated having knowledge of the Text object and the insertion point for
the intended text, for example. A text filter is ideal for implementing a date field, a
social security field or a phone number field -- text with a specific format.
Unfortunately both character and text filters have one drawback -- they are not called
during the paste mechanism. This can be counteracted with the Text delegate
method textDidGetKeys:isEmpty:.

How do all of these filters and methods work together?
Assuming that the full battery of filters and such have been implemented, they are
deployed in the following order when any key is entered:

charFilter
textFilter
textDidGetKeys:isEmpty:

So what's the point of this MiniExample?
This example attempts to combine several often-requested TextField behaviors into
one class. These behaviors are:

· The ability to end editing after a maximum number of characters have been entered
for a specific field -- "maxLength".

·€The ability to cause the insertion point to automatically jump to the next TextField
when the maximum number has been met -- "autoJump".

· The ability to interpret the Return character literally -- instead of as a signal to move
to the next TextField -- "acceptsReturn".

· The ability to employ any combination of the above features -- a non-autojumping,
non-return accepting TurboTextField of maxLength 0 will behave as any standard
TextField.

· The ability for all of the above to work consistently with the Text paste mechanism.

How to implement this?
A character filter is required to implement autoJump -- say you want to jump after 5
characters: this is done by posting a minutely delayed faked event containing the
6th character typed (so that it doesn't get lost) immediately after returning a TAB in
place of that character. This implementation is not perfect -- you cannot backspace
to the previous TextField and there is a slight lag because the cursor does not jump
to the next TextField until the user actually types the overflow character.

A character filter is also required to implement acceptsReturn. When a RETURN
key is detected and acceptsReturn is in effect, the standard NXEditorFilter() is
employed (because it handles Returns literally) otherwise the default NXFieldFilter()
is used.

The lengthWatching "maxLength" mechanism requires hooks in the character filter
(for the autoJump mechanism), the text filter and textDidGetKeys:isEmpty: (for
pasting). All of these mechanisms must work together in order to keep the TextField
on or below it's maximum length.

It is necessary to subclass TurboTFCell primarily in order to override the
select:inView:editor:delegate:start:length: and
edit:inView:editor:delegate:event: methods -- it's important for the filters and the

text delegate methods to know which Cell is currently being edited -- one of these
two methods is always called whenever a TextField becomes the firstResponder and
overriding these methods allows an internal static variable to be reset to the current
Cell. Since each Cell maintains information about it's maxLength, autoJumping,
textFilter, etc. it's essential that all of the filters can get access to this information via
class methods. Methods such as setAutoJump:forLength: and
setAcceptsReturn: have been added to this class. Identical methods have been
added to the TurboTextField class which call these TurboTFCell methods, so the
programmer need only worry about the TurboTextField class and allow this class to
do it's thing invisibly. The character and text filters have also been implemented in
this class. For those wishing to customize the text filter for a specific Cell, the
setCustomFilter: method is provided.

The three TurboTextFields in the nib file install their own custom filter in this way:
the Date Field, the Social Security Number Field and the Phone Number Field.

TextField also must be subclassed in order to install TurboTFCell as it's cell class.
This is also where textDidGetKeys:isEmpty: is implemented. When a user pastes
an illegally long string into the TurboTextField, the previous contents of the field will
be restored -- the TurboTFCell maintains an instance variable "originalText" with this
information.

EmacsText:

Implemented as a subclass of Text using a table-driven approach. The keyDown:
method for the Text subclass has been overridden. In the new method, each key
stroke is examined to determine whether it is an emacs character, in which case it is
interpreted, or whether the key should be passed through to the superclass's
keyDown: method. This object was created in IB as a custom view (retyped to

EmacsText) which was put into a ScrollView using the Layout/Group In ScrollView
feature. No other IB connections were required.

Other Files

SoapStory.rtf An RTF file loaded into the Emacs window.

SEE ALSO:

· "The Text Class", p. 9-4 (Chapter 9: User-InterfaceObjects) of the NeXTstep
Concepts Manual.

· The Text Class spec sheet, p. 2-557 of the NeXTstep Reference Manual, volume 2.

KUDOS:

Thanks to:
·€Julie Zelenski for the Emacs binding support code.
·€Jayson Adams for the "Auto Jump" idea.

Change History:
· 4/14/92 sz: Found and fixed a crasher in the date filter (TextORama.m) which

was due to a statically allocated string. [The crash would occur if you
pasted in a string longer than 10 characters into the date field.]

· 4/27/92 sz: Changed the mechanism used to set the cell class for the
TurboTextField. Previously I was setting the cell class in +initialize but
this may create problems if you attempt to create any other instances of

TextField in your application (depending upon the order of events). This
is an inherent problem to the way TextField is implemented (and the other
controls as well). Bug #16741 has been filed against the documentation
to explain this more fully.

The TextField class maintains a static variable indicating the cell class.
(Objective-C does not support class variables.) When you set this in
+initialize it changes that class for everything -- TextField as well as
TextField subclasses. So once you changed it for your TextField
subclass, it will continue to effect all other TextFields created everywhere!

The way to workaround this is to *not* set the cell class in the +initialize
method in the TurboTextField class and instead, set it temporarily when
init'ing a textField of your type and set it back afterwards:

@implementation TurboTextField

- initFrame:(const NXRect *)frameRect
{
 id newTextField;

 [[self class] setCellClass: [TurboTFCell class]];
 newTextField = [super initFrame:frameRect];
 [[self class] setCellClass: [TextFieldCell class]];
 return newTextField;
}

...

@end

· 7/23/92 sz: Updated to 3.0. Primary changes were:
· Replaced all of the "#import <appkit/Class.h>" lines with "#import

<appkit/appkit.h> in the Header files.
· Modified the loadEmacsScrollView method of TextORama to read the

text file from the main bundle.
· Under 3.0 you can no longer initialize a variable using the

"@selector(foo)" syntax at compile time. I added a +initialize method to
EmacsText to take care of this.

